Milestone reached to break the von Neumann bottleneck

Read our new paper: In-memory photonic dot-product engine with electrically programmable weight banks Abstract Electronically reprogrammable photonic circuits based on phase-change chalcogenides present an avenue to resolve the von-Neumann bottleneck; however, implementation of such hybrid photonic–electronic processing has not achieved computational success. Here, we achieve this milestone by demonstrating an in-memory photonic–electronic dot-product engine, one that decouples electronic programming of phase-change materials (PCMs) and photonic computation. Specifically, we develop non-volatile electronically reprogrammable PCM memory cells with a record-high 4-bit weight encoding, the lowest energy consumption per unit modulation depth (1.7 nJ/dB) for Erase operation (crystallization), and a high switching contrast (158.5%) using

Read More »